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Exponential Stability of Linear Impulsive 
Differential Equations 
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The notion of exponential stability for linear impulsive differential equations at 
fixed moments is made precise. 

1. INTRODUCTION 

In relation to numerous applications in science and technology, recently 
the theory of impulsive differential equations has been developed intensively 
(Lakshmikantham and Liu, 1989; Lakshmikantham et  al., 1989; Leela, 
1977; Milev and Bainov, to appear; Samoilenko and Perestyuk, 1987; 
Simeonov and Bainov, 1988). In the present paper the notion of exponen t ia l  

s tabi l i ty  for linear impulsive differential equations at fixed moments is made 
precise. 

2. PRELIMINARIES 

Let t o < t l < "  "" < t i < ' "  ", lira ti = ~ as i ~  ~ ,  be a given sequence of 
real numbers. Consider the linear impulsive differential equation (LIDE) at 
fixed moments 

d x  
- A ( t ) x ,  t r ti 

dt (1) 

x ( t , + O ) = B ~ x ( t 3 ,  i =  1, 2 . . . .  

where the n • n coefficient matrix A ( t )  is piecewise continuous in the interval 
[to, + ~ )  with points of discontinuity of the first kind at t = t i ,  i =  1, 2 . . . . .  
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and the impulse matrices Bi, i=  1, 2 . . . . .  are contant. The underlying vector 
space is g~" or C n. 

The solutions x(t) defined in the interval [tk+ O, +o0) are continuously 
differentiable for t # t,- with points of discontinuity of the first kind at t = ti, 
i>  k. Let us note that x(ti):= x(t i-0) ,  i=  1, 2 . . . . .  The fundamental matrix 
X(t, s) of the LIDE (1) for t>_s, t~[tm+O, t,,+ 1], se[tj-l +0, tj], m>_j-- 1, 
admits the representation 

X(t, s)= U(t)U-l(tm+O)BmU(t,,) " " " U-'(b+O)BjU(b)U-'(s). (2) 

where U(t) is the fundamental matrix of the equation dx/dt=A(t)x. The 
fundamental matrix is invertible if and only if the impulse matrices B~, 
j < i < m ,  are nonsingular. 

Definition 1. The LIDE (1) is said to be: 
(a) Stable if for any e > 0 and for any s > to there exists 6 > 0 such that 

for each solution x for which [x(s)l < 6  the inequality lx(t)l< e holds 
for t>s. 

(b) Uniformly stable if for any e>  0 there exists 6 > 0 such that for any 
s_> to and for each solution x for which Ix(s)l < 6 the inequality Ix(t)[ < e is 
valid for t >_ s. 

Definition 2. The LIDE (1) is said to be: 
(a) Equiasymptotically stable if it is stable and, moreover, for any s > to 

there exists q=q(s)>O and for any e > 0  there exists T > 0  such that for 
each solution x for which Ix(s)[ < 1/the inequality Ix(t)[ < e holds for t > s + T. 

(b) Uniformly asymptotically stable if it is uniformly stable and, more- 
over, there exists 7/> 0 and for any e > 0 there exists T> 0 sUch that for each 
solution x and for any s >  to for which Ix(s)[ < 1/ the inequality Ix(t)[ < e is 
valid for t > s + T. 

Remark 1. All solutions of the LIDE (I) are stable (uniformly Stable, 
equiasymptotically stable, or uniformly asymptotically stable) if and only if 
its zero solution enjoys the same property. 

3. MAIN RESULTS 

Denote by Lk, k =0, 1, 2 . . . . .  the linear space of solutions x(t) of the 
LIDE (1) 
where 

defined in the interval [tk+0, +Or). Let e/=col(6~ . . . . .  6~), 

6~={01 for i r  
for i=j  

is Kronecker's symbol and col(. �9 .) stands for a column vector. 
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The solutions xj(t)=X(t, tk+ 0)ej, j =  1, 2 , . . . ,  n, are linearly indepen- 
dent as elements of the vector space Lk. We note that their restrictions to 
the interval [tk+, +0,  +oo) as elements of the linear space Lk+, are linearly 
dependent if the impulse matrix Bk+; is singular. In this case both the merg- 
ing of solutions at the point tk+,+ 0 and the noncontinuability to the left of 
some solutions of Lk+, are observed. 

Each solution x(t) with initial value x(tk+0)=col(A., . . . . .  ;tn) is a 
linear combination of the solutions xj( t), j= 1, 2 , . . . ,  n, 

x(t) =X(t, tk + O)x(tk + 0) = ~,~Xl(t) +" �9 �9 + ,~,x,(t) (3) 

i.e., Lk, k = 0, 1, 2 . . . .  , are n-dimensional linear spaces. 
The classical Definitions 1 and 2 are valid for ordinary differential 

equations as well. For the LIDE (1) the study of exponential stability is 
appropriate with the aim of taking into account the specific character of this 
class of  ordinary differential equations. 

Definition 3. The LIDE (1) is said to be: 
(a) Exponentially stable if for any nonnegative integer k there exist 

positive constants ak and Nk such that for each solution X~Lk the following 
inequality holds: 

Ix(t)l<Nke-~k'lX(tk+O)l for t>_tk+O (4) 

(b) Uniformly exponentially stable if there exist positive constants a 
and N such that for any nonnegative integer k and for each solution XeLk 
the following inequality is valid: 

]x(t)[<_Ne-~(t-')[x(s)[ for t>s>tk+O (5) 

(c) Weakly exponentially stable (weakly uniformly exponentially stable) 
with respect to the space of solutions Lk if inequality (4) [inequality (5)] is 
valid only for the solutions x~L~, where k is a fixed number. 

Remark 2. For the L1DE (1), Definition l is equivalent to the following 
definition (Milev and Bainov, to appear, Propositions 1 and 2). 

Definition 4. The LIDE (1) is said to be: 
(a) Stable if for any nonnegative integer k there exists a positive con- 

stant Nk such that for each solution X~Lk the following inequality holds: 

Ix(t)l<NklX(tk+O)l for t>tk+O (6) 
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(b) Uniformly stable if there exists a positive constant N such that for 
any nonnegative integer k and for each solution XeLk the following ine- 
quality holds: 

[x(t)l<NIx(s)l for t>s>_tk+O (7) 

Remark 3. A straightforward verification yields that for the LIDE (1) 
exponential stability implies stability and uniform exponential stability 
implies uniform stability. 

Proposition 1. If  the LIDE (1) is exponentially stable, then it is equi- 
asymptotically stable. 

Proof. Let se[tk+O, tk+ ~]. By the inequality of Gronwall-Bellman, 

Ig(t~+O)U-~(s)l _<exp IA(0)I dO 
k 

Choose 

rl = N-~ expl--aks-- f , I IA( O)l dO] 

Let e be an arbitrary positive number. Choose 

T = { l a ~ J l n c > 0  for for 0<e<le>l 

Then for each solution XeLk and for any t>s+ T we have 

Ix(t)l <Nk e-~t[x(tk +O)[ 

= Nk e -~('-s) e~S I U(tk + O) U-I(s)x(s)l 

<Ark exp aks+ IA(O)ldO rlexp(--akT)<e 
k 

Hence the LIDE (1) is equiasymptotically stable. �9 

Remark 4. The inverse assertion is not true. We shall construct an 
example of an LIDE which is equiasymptotically stable but is not exponen- 
tially stable. 

Example 1. Let tk = k, k = 1 , 2 , . . . .  Consider the LIDE 

dx 
- - = 0 ,  tCk  
dt 

(8) 
k - l  

x(k + O) = x ( k -  0), k = 1, 2, .. 
k 
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The solution x(t) can be written in the form 

[ s ]  , ,  
x ( O  = x t s )  

Note that [k + 0] = k  and [ k - 0 ]  = k -  1. A straightforward verification 
shows that the LIDE (8) is equiasymptotically stable but not  exponentially 
stable, since 

lira sup 1 lnlx(t)l = 0 
f ~ arr:~ t 

Proposition 2. Definition 2(b) is equivalent to Definition 3(b). 

Proof Let the LIDE (1) be uniformly asymptotically stable. For  any 
solution x # 0  and for any fixed s of  the definition domain of  x there exists 
a positive constant c such that clx(s)l = 1 7 / 2 .  Since cx is a solution, too, then 
by Definition 2(b) for any t >__ T we have 

clx(t + s ) l  < e = c2eq -~ I x ( s ) l  

i.e., 

ix(t + s)i < 2e0-' ix(s) i  

Fix ~ so that 2eq -1 < e -1. Thus, there exists a positive constant T such 
that for any solution x and for any s of the definition domain of  x for t > T 
the following inequality holds: 

ix(t + s) l <e-lix(s)] (9) 

Hence there exists a positive constant T such that for any nonnegative 
integer k and for any solution x~Lk for s_> t~ + 0 and t > T inequality (9) is 
valid. Let t > T and let t ~ [m T, (m + 1)T], where m is a positive integer. Since 
t /m >__ T, then in view of  (9), 

x(, l ,+s) 
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i~ 

Ix( t + s)[ < e-mix(s)[ <_ e - ' IT + llx(s)l 

Set a = l / T > 0  and obtain that for t>_ T 

Ix(t + s)l _ e e-~'lx(s)l 

Let t~[0, T]. Since the LIDE ( i ) i s  uniformly stable, then by Definition 4(b) 
there exists a positive constant 19 such that 

Ix( t + s)l _< Nlx(s)l < ~7 e "r  e-~'lx(s)l 

Hence there exist positive constants a = l I T  and N=max(e ,  N e ~r) such 
that for any nonnegative integer k and for any solution XSLk  the following 
inequality is valid: 

[x( t+s) l<_Ne-~ ' lx (s ) l  for t_>0 and S>__tkq-O 

i.e., the LIDE (1) is uniformly exponentially stable. 
The inverse assertion follows from inequality (5). Choose 7/= I / N ,  T =  

- a  -11n e > 0  for 0 < e < l  or T = I  for e _ l  and obtain that 

Ix(t)l < N e-~"-~)lx(s)l < N e-'~rrl < e �9 

Proposition 3. Let the LIDE (1) be exponentially stable. There exists a 
positive constant a and for any positive integer k there exist positive con- 
stants Nk such that for any solution X~Lk  the following inequality holds: 

[x ( t ) l<Nke-~ ' l x ( t k+O) l  for t>_tk+O 

Proof. Since the LIDE (1) is exponentially stable, then by (4) for any 
positive integer k and for any solution x e L k  we have Z[x] < - a k ,  where 
Z[x] stands for Lyapunov's characteristic exponent 

Z [x] = lim sup I_ lnlx(t)[ 
1~oo  t 

Since Lk is a finite-dimensional linear space and for any solution x ~ L k  the 
representation (3) is valid, then 

X[x] < max Z[XJ] = -- i lk< - - ak<0  
I _<j_<n 

Denote by :~k, k = 0, 1,2 . . . . .  a solution of  Lk with the maximal characteris- 
tic exponent, i.e., X[~k] =--ilk.  The restriction of  the solution YCk(t) to the 
interval [& + l + 0, + ~ )  is an element of  the space Lk + i, hence --ilk < --ilk + I. 

If we suppose that there exist n + l  different exponents - i lko< 
--ilk, <" " " < --ilk,, < 0r then the restrictions of  the ~olutions ~ko, ~k, . . . .  , Y~k,, 
to the interval [tk,+ 0, +O0) are elements of  the n-dimensional linear space 
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Lk, and they should be linearly independent since they have different charac- 
teristic exponents. Hence, among the exponents Pk, k = 0, 1, 2 . . . .  , there are 
at most n different and let 

max {-ilk} = - f l  
k =0 ,1 ,2 , . . .  

For an arbitrary solution x e L k  the representation:(3) is valid and since 
max1 ~/<_. Z[Xj] <_-fl, then for any ee(0,  l) there exists a positive constant 
Ark such that 

Ixj(t)t _<N~' e -p~ -~)r 

Hence 

[x(t)l ~ nix(& + 0)[N* e -0(' - ~)' --Nk e-~tlx(tk + 0)[ 

where Nk = nN* and a = fl(1 - e). [ ]  

We shall show that ther e exist LIDE which are exponentially stable but 
not uniformly asymptotically stable. 

Example 2. Let tk = e k, k = 0, 1, 2 . . . . .  and consider the LIDE 

dx 
- ( { l n t )  ' - ~ ) x ,  t # tk 

dt (10) 

x(tk+O)=e-t~X(tk), k = l, 2 . . . .  

where {y} = y - D ' ]  is the fractional part of  the number y. We note that 
{k+0} = 0  and { k - 0 }  = 1. For t>_s the solution is written down in the form 

x(t)  = x(s) exp[t{ln t} - s{ln s} - 23- ( t -  s)] 

and a straightforward verification yields that the LIDE (10) is exponentially 
stable but not uniformly asymptotically stable. 

Proposition 4. If the LIDE (l) is weakly exponentially stable (weakly 
uniformly exponentially stable) with respect to the space Lk, then the LIDE 
(1) is weakly exponentially stable (weakly uniformly exponentially stable) 
with the same exponent with respect to the spaces Li, 0 _  i_<k, as well. 

Proof By the inequality of  Gronwall-Bellman for any r~, r2~ 
[t,-1 + 0, &] the following inequality holds: 

[U(vj) U-I(r2)] <exp i [A(0)[ dO=a~ 
k -  

Let the LIDE (1) be weakly exponentially stable with respect to the 
space Lk. For any solution x ELk- i, its restriction to the interval [tk + 0, + 00) 
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belongs to the space Lk and by Definition 3(c) for any t > tk + 0 we have 

Ix(t)l _< Nk e-a~tlX( tk + O)l = Nk e-a*'lBk U( tk) U-l ( tk-1 -I- O)X( tk- 1 "k 0)1 

< NklBklak e-ak'lx(tk- I + 0)l 

If t e [ t k - i  +0,  tk], then 

Ix(t)l = I U(t) U -1 ( tk- i  + O)x(tk-~ + 0)1 

< aklx(tk- 1 + 0)1 < ak e a*'* e-a~'lx(tk- 1 + 0)l 

Choosing ak-1 = ak and Nk-l=maX(NklBk[ak ,  ak ear's), we obtain that the 
LIDE (1) is weakly exponentially stable with respect to the space Lk-i 
as well. 

Now let the LIDE (1) be weakly uniformly exponentially stable with 
respect to the space Lk. For any solution X e L k -  l its restriction to the interval 
[tk+0, + ~ )  belongs to Lk and for t > s > t k + O  inequality (5) is valid. 

I f  tk-I +O<_s<_tk <t, then 

Ix(t)l < N e -at'-'~)lx( tk + 0)1 = N e -at '-s) e a~'~-s)lBkU( tk) U -I (s)x(s)[ 

< N]Bklak e a~tk-'k-') e-a.-,)lx(s)l 

I f  tk- l  +O<_s<t <tk ,  then 

Ix(t)l = I U(t) U- '  ( s)x(  s)l < ak e a('~- '~- ') e -a('-~)lx( s)l 

Hence, choosing 

N= max(N, ak e a~'~-'~-'), NlBklak e a~'k-'~-')) 

we obtain that the LIDE (1) is weakly uniformly exponentially stable with 
respect to the space Lk- j  as well. �9 

Proposition 5. Let the LIDE (1) be weakly exponentially stable (weakly 
uniformly exponentially stable) with respect to the space Lk-I and let the 
impulse matrix Bk be nonsingular. Then the LIDE (1) is weakly exponen- 
tially stable (weakly uniformly exponentially stable) with the same exponent 
with respect to the space Lk as well. 

Proof. Since the impulse matrix Bk is nonsingular, then each solution 
of Lk is a restriction of a solution of Lk-l. Hence, if the LIDE (1) is 
weakly uniformly exponentially stable with respect to Lk-  t, then it is weakly 
uniformly exponentially stable with respect to Lk as well. 
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Now let the LIDE (1) be weakly exponentially stable with respect to 
Lk-  ~ . Then for t > tk + 0 we have 

lx(t)l _< Ark- j e-~k-"lX(tk- 1 -1" 0)1 

= Nk- j  e-~k-"l U(tk- l) U -1 (tk)B-s + 0)1 

<Nk-~lB~ll  exp ]A(O)ldO exp(--ak-~t)  Ix(&+0)l 
~ t k - I  

= Nk e -~k-''lx(t~ + 0)1 

where 

Nk=Nk_~IB;~[ exp IA(0)I dO 
k ! 

Hence the LIDE (1) is weakly exponentially stable with respect to the space 
Lk as well. �9 

Proposition 6. Let the impulse matrices B~, i=0, 1, 2 , . . . ,  of the LIDE 
(1) be nonsingular. If the LIDE (1) is weakly exponentially stable (weakly 
uniformly exponentially stable) with respect to a fixed space Lk, then the 
LIDE (1) is exponentially stable (uniformly exponentially stable). 

Proof  Proposition 6 is a corollary of Propositions 4 and 5. 

Remark 5. If the impulse matrix Bk is singular, then it is possible for 
the LIDE (1) to be weakly uniformly exponentially stable with respect to 
the space Lk-j but not to be weakly stable with respect to Lk. We illustrate 
this by the following example. 

Example 3. Let ti = i, i = 0, 1 , 2 , . . . ,  and consider the LIDE 

dx 
- - = A x ,  tr  
dt (11) 

x( te+O)=B,x( t , ) ,  i= 1, 2 . . . .  

where 

0 ~ , B;=(I 0 01) for i>_2 
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A straightforward verification yields that the LIDE (11) is weakly uniformly 
exponentially stable with respect to the space L0, since the impulse at the 
moment tl crumples the "inconvenient" solutions. The LIDE (11) is not 
weakly stable with respect to any of  the spaces Lk, k > 1, since on the intervals 
[tk+0, + ~ ) ,  k =  1, 2 . . . . .  the problem coincides with the classical one and 
the matrix A has an eigenvalue greater than zero. 

Remark 6. If in Example 3 we define the impulse matrices by 

B i = ( ~  0 1 ) f o r  i = 1 0 j + l  and Bi=(10 ~ ) f o r  i r  

j =  0, 1, 2 . . . . .  then the LIDE (11) becomes uniformly exponentially stable. 

A C K N O W L E D G M E N T  

The present investigation is supported by the Ministry of  Culture, 
Science and Education of  People's Republic of Bulgaria under Grant 61. 

R E F E R E N C E S  

Lakshmikantham, V., and Liu, X. (1989). Journal of Mathematical Analysis and Applications, 
137, 591-604. 

Lakshmikantham, V., Bainov, D. D., and Simeonov, P. S. (1989). Theory ofbnpulsive Differen- 
tial Equations, World Scientific, Singapore. 

Leela, S. (1977). Nonlinear Analysis, Theo~T, Methods and Applications, 1, 667-677. 
Milev, N. V., and Bainov, D. D. (to appear). Stability of linear impulsive differential equations. 
Samoilenko, A., and Perestyuk, N. (1987). Differential Equations with hnpulse Effect, Vi~a 

gk01a, Kiev, Ukraine. 
Simeonov, P. S., and Bainov, D. D. (1988). Journal of Computational and Applied Mathematics, 

23, 353-365. 


